Revealing the Unseen: Guiding Personalized Diffusion Models to Expose Training Data
Wu X, Zhang J, Wu S. (2024). "Revealing the Unseen: Guiding Personalized Diffusion Models to Expose Training Data." arXiv preprint arXiv:2410.03039.
[Under Review] Data Extraction on Personalized Generative Models
Instructor: Steven Wu (CMU)
May. 2024 — Present
[ICML 2023 (Oral) & CVPR 2024] Copyright Authentication and Imitation Prevention for Diffusion Models
Oct. 2022 — May. 2024
Instructor: Yang Hua (QUB), Hao Wang (LSU), Tao Song (SJTU)
Wu X, Zhang J, Wu S. (2024). "Revealing the Unseen: Guiding Personalized Diffusion Models to Expose Training Data." arXiv preprint arXiv:2410.03039.
Wu X*, Zhang J*, Hua Y, et al. (2024). "Exploring Diffusion Models' Corruption Stage in Few-Shot Fine-Tuning and Mitigating with Bayesian Neural Networks." arXiv preprint arXiv:2405.19931. (Co-First Author)
Wu X, Hua Y, Liang C, et al. (2024). "CGI-DM: Digital Copyright Authentication for Diffusion Models via Contrasting Gradient Inversion." CVPR 2024.
Liang C*, Wu X*, Hua Y, et al. (2023). "Adversarial Example Does Good: Preventing Painting Imitation from Diffusion Models via Adversarial Examples." ICML 2023 (Oral). (Co-First Author)